QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs

نویسندگان

  • Édouard Bonnet
  • Panos Giannopoulos
  • Eun Jung Kim
  • Pawel Rzazewski
  • Florian Sikora
چکیده

A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics ’90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2Õ(n) for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2n , unless the Exponential Time Hypothesis fails. 1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and Problems

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EPTAS for Max Clique on Disks and Unit Balls

We propose a polynomial-time algorithm which takes as input a finite set of points of R3 and compute, up to arbitrary precision, a maximum subset with diameter at most 1. More precisely, we give the first randomized EPTAS and deterministic PTAS for Maximum Clique in unit ball graphs. Our approximation algorithm also works on disk graphs with arbitrary radii. Almost three decades ago, an elegant...

متن کامل

Bidimensionality and geometric graphs

Bidimensionality theory was introduced by Demaine et al. [JACM 2005 ] as a framework to obtain algorithmic results for hard problems on minor closed graph classes. The theory has been sucessfully applied to yield subexponential time parameterized algorithms, EPTASs and linear kernels for many problems on families of graphs excluding a fixed graph H as a minor. In this paper we use several of th...

متن کامل

Computing the Tutte Polynomial on Graphs of Bounded Clique-Width

The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs without induced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time exp O(n) ) for compu...

متن کامل

In-Place Algorithms for Computing a Largest Clique in Geometric Intersection Graphs

In this paper, we study the problem of designing in-place algorithms for finding the maximum clique in the intersection graphs of axis-parallel rectangles and disks in R2. First, we propose an O(n2 log n) time in-place algorithm for finding the maximum clique of the intersection graph of a set of n axis-parallel rectangles of arbitrary sizes. For the intersection graph of fixed height rectangle...

متن کامل

Graph-Theoretical Models for Frequency Assignment Problems

In the present dissertation we investigate structural and algorithmic aspects of the frequency assignment problem in mobile telephone networks. This problem is of particular interest for the graph theory because of its close relationship to graph coloring. The frequency assignment problem includes the characteristic features of T-coloring, list coloring, and set coloring, and belongs thereby to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.05010  شماره 

صفحات  -

تاریخ انتشار 2017